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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Provides a time-efficient and automa-
tized deep learning method for seafloor 
polymetallic nodules abundance esti-
mation as an alternative to expert visual 
evaluation of large data set of seafloor 
photographs.

• Provides a web-based tool to annotate 
polymetallic nodules on seafloor photo-
graphs to collect the learning data (la-
bels) that combines expert knowledge 
and process automatization.
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A B S T R A C T

The burgeoning demand for critical metals used in high-tech and green technology industries has turned 
attention toward the vast resources of polymetallic nodules on the ocean floor. Traditional methods for esti-
mating the abundance of these nodules, such as direct sampling or acoustic imagery are time and labour- 
intensive or often insufficient for large-scale or accurate assessment. This paper advocates for the automatiza-
tion of polymetallic nodules detection and abundance estimation using deep learning algorithms applied to 
seabed photographs.

We propose UNET convolutional neural network framework specifically trained to process the unique features 
of seabed imagery, which can reliably detect and estimate the abundance of polymetallic nodules based on 
thousands of seabed photographs in significantly reduced time (below 10 h for 30 thousand photographs). Our 
approach addresses the challenges of data preparation, variable image quality, coverage-abundance transition 
model and sediments presence.

We indicated the utilization of this approach can substantially increase the efficiency and accuracy of resource 
estimation, dramatically reducing the time and cost currently required for manual assessment. Furthermore, we 
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discuss the potential of this method to be integrated into large-scale systems for sustainable exploitation of these 
undersea resources.

1. Introduction

The European Commission has introduced regulations to align EU 
policies with efforts to combat environmental degradation and climate 
change. This involves measures to reduce greenhouse gas emissions. The 
transition to the economy reliant on renewable sources requires signif-
icant amounts of elements like copper, nickel, cobalt, zinc, lithium, and 
rare earth elements. However, terrestrial resources are heavily exploited 
or unsustainably managed. As a result, deep sea minerals including 
polymetallic nodules, cobalt-rich crusts, and massive sulphides on the 
seafloor, have been studied for years as alternative sources (Hein et al., 
2013; Mucha et al., 2011; Milinovic et al., 2021).

Deep-sea polymetallic nodules are seen as a promising source of 
metals needed to support global population growth, urbanization, high- 
tech applications, and a sustainable green economy (Hein et al., 2013; 
Sakellariadou et al., 2022; Volkmann et al., 2018).

However, deep ocean mining can be complex in many aspects. To 
assess the viability of such operations, it's crucial to understand the 
quantity and quality of these underwater resources, to develop effective 
extraction methods and mitigation strategies to minimize environmental 
impact, as well as to evaluate the economic potential, metallurgical 
processing, and metals markets (Parianos et al., 2021).

Although no commercial-scale deep- sea mining has occurred, many 
mining operations are active in the shallow waters (Miller et al., 2018). 
Exact resource assessment can be challenging in the deep ocean due to 
the harsh environment and the difficulties in accessing the seabed 
(Weaver et al., 2022). However, several methods exist to assess nodule 
resources, including: seafloor photography, acoustic data, local 
gravimetry data and direct sampling (Alevizos et al., 2018; Gazis et al., 
2018; Peukert et al., 2018; Kuhn et al., 2020). Direct methods involve 
physically sampling the seabed to collect and count nodules. This can be 
done using a variety of tools, such as box corers orgrab samplers (Mucha 
and Wasilewska-Błaszczyk, 2020). Direct methods are assumed the most 
accurate way to assess nodule abundance but are also the most time- 
consuming and expensive.

1.1. Exploration methods

Remote (indirect) sensing involves seafloor photography and 
acoustic data. The methods can be used to map the seabed nodule dis-
tribution to estimate their size and density. Multibeam echosounder or 
sonar backscatter intensities correlate well with the abundance of pol-
ymetallic nodules. Some of the seabed features like high slope gradient 
and basement outcrops may result in worse recognition (Yoo et al., 
2018). Indirect methods are proven less accurate than direct methods, 
but they are much faster and cheaper (Gazis et al., 2018; Mucha and 
Wasilewska-Błaszczyk, 2020; Parianos et al., 2021; Tsune, 2021; Wong 
et al., 2021; Yoo et al., 2018). Combining these technologies allows 
mining companies to better assess nodule resources, enabling informed 
decisions on mining feasibility and the development of measures to 
minimize environmental impact.

The most studied polymetallic nodule area is Clarion and Clipperton 
Fracture Zones (CCZ), where enormous quantities of these nodules were 
observed, conservatively estimated to total 21 billion dry tons (Hein 
et al., 2020).

Within this region, the international consortium Interoceanmetal 
Joint Organization (IOM), has the right to conduct exploration activities 
on two sectors located in the Pacific, with a total area of 75,000 km2, 
(Mucha et al., 2011). IOM's information include datasets based on 
which, preliminary resource estimates can be made. Published estimates 
are based on data from seafloor samples taken with a box corer (Gazis 

et al., 2018; Mucha et al., 2011). The high costs and labour intensity of 
direct sampling limit the number of collected samples and the accuracy 
of estimates, particularly in smaller areas. Since bottom sampling pro-
vides only point measurements, it doesn't offer comprehensive infor-
mation on resource assessment. Therefore, it's rational to complement it 
with hydro-acoustic methods, bathymetry, backscatter, side-scan sonar, 
and bottom photography (Rühlemann et al., 2011; Wong et al., 2017; 
Mucha and Wasilewska-Błaszczyk, 2020; Sharma et al., 2010; Wasi-
lewska-Błaszczyk and Mucha, 2020).

In the IOM area, attempts have already been made to estimate re-
sources based on Red-Green-Blue images (RGB) concurrently assessing 
the feasibility of using this type of data for estimation, similar to what 
was done in other areas of research (Tsune and Okazaki, 2014; Wasi-
lewska-Błaszczyk and Mucha, 2020). Using images for estimation is the 
next step to further improve the assessment. Most contractors operating 
within the CCZ collected many photographs over the years, and some 
have been used for estimation to some extent. Photographically 
collected data is considered “soft” supplementary data, but there is no 
clear methodology on how these data can be used for quantitative 
assessment.

Given the cost-effectiveness of surveys, a large number of photo-
graphs can be as helpful, or even more so, than a few expensive samples. 
In this paper, the authors explore this idea by investigating whether 
deep learning can estimate coverage and abundance from bottom pho-
tographs (Ellefmo and Kuhn, 2021; Felix, 1980; Wasilewska-Błaszczyk 
and Mucha, 2021).

1.2. Image processing

Photo processing methods in the literature can be categorized into 
three groups: non-automated, partially automated, and fully automated. 
Non-automated methods rely on expert evaluation, making them sub-
jective and variable, depending on the evaluator's experience and con-
dition (Sharma et al., 2013). The parameters determined from photos 
are used in regression models to describe the relationship between 
visible coverage and real samples, considering nodule coverage, expert 
assessments, and the genetic type and size of the nodules (Wasilewska- 
Błaszczyk and Mucha, 2020, 2021).

These methods are low in accuracy and unsuitable for large-scale 
image analysis, as they rely on expert evaluation and cannot be 
automated.

In detecting other minerals, alternatives to non-automatic are semi- 
automatic and automatic methods where segmentation is a critical step 
in Digital Rock Physics (DRP) (Karimpouli and Tahmasebi, 2019).

1.3. Coverage assessment

Image coverage evaluation relies on computer vision (CV) algo-
rithms for nodule detection and segmentation. However, automating 
this process can introduce systematic errors in estimating nodule sizes 
and quantities, influenced by the chosen image processing strategies. 
Threshold values for distinguishing nodules from sediments based on 
color contrast also vary with different strategies (Tsune and Okazaki, 
2014). Scattering and color change are two major problems of distortion 
for underwater imaging (Serikawa and Lu, 2014). To address issue of 
uneven illumination and morphological defects caused by white sand 
coverage in nodule images, a “background grey value calculation” (Hade 
et al., 2020) was proposed. Despite advancements like photo augmen-
tation and a new underwater model to correct attenuation, using CV 
methods remains complex. A fast joint trigonometric filtering dehazing 
algorithm was also introduced, resulting in enhanced images with 
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reduced noise, better dark region exposure, improved global contrast, 
and sharper details (Serikawa and Lu, 2014).

Other researchers observed the traditional segmentation algorithms 
have insufficient performance in the face of adhesion, and the segmen-
tation boundary is fuzzy (Song et al., 2019). The novel two-stage 
diffusion-based model for nodule image segmentation, and a linear 
regression model for predicting nodule abundance based on the 
coverage obtained through nodule segmentation indicated promising 
results (Shao et al., 2023). It is worth noting that the development of 
automated detection algorithms enabled quantitative optical image data 
analysis and subsequent statistical interpretation of nodule densities. 
The spatial coverage of optical imaging is much higher than box core 
sampling (Gazis et al., 2018). However, a comparison of the automated 
analysis of the images with the data from box core samples showed that 
nodule abundances derived from the images can underestimate the true 
values by a factor of up to 5 (Kuhn and Rühlemann, 2021).

The use of neural networks methods to assess polymetallic nodule 
abundance based on seabed photographs is a relatively new area of 
research. The recent results of segmentation performed using machine 
learning (ML) methods, including unsupervised neural network seg-
mentation or unsupervised deep learning, have been presented below.

The core algorithm for such seafloor image analysis with a particular 
focus on nodules coverage estimation is the so-called hyperbolic self- 
organising map (HSOM) neural network approach (Kuhn and Rühle-
mann, 2021). Other approach addressed challenge by combining high 
resolution hydroacoustic and optical data sets acquired with an auton-
omous underwater vehicle (AUV) and connecting those data with a 
machine learning (ML) algorithm (here random forests), in order to 
predict the spatial distribution of the number of nodules per square 
meter (Gazis et al., 2018). Evolutionary tuned Segmentation (ES4C) 
using Cluster Co-occurrence and a Convexity Criterion method for a fully 
automated segmentation of benthic images to polymetallic nodules and 
sediment background is introduced. ES4C is based on an arbitrary 
feature representation and vector quantization algorithm. Through 
prototype assignments a binary image segmentation function is con-
structed in a data-driven way without manual prototype annotation. 
Possible assignments are explored with the genetic algorithm to provide 
a heuristic solution based on an efficiently computable fitness measure 
(Schoening et al., 2016). Due to their automatic process, they are suit-
able for analyzing large amounts of data and have a higher accuracy of 
coverage assessment. CV or unsupervised ML algorithms perform worse 
than the expert when there is partial coverage of nodules by sediment, 
and their accuracy is correlated with the quality of the images, including 
their variable illumination and variable angle of capture. This translates 
into the possibility of reduced under coverage detection.

Therefore, combination expert knowledge with supervised deep 
learning seemed to the authors an approach that should overcome the 
disadvantages of manual and unsupervised methods while maintaining 
full automation of the process and accuracy.

This paper presents our newly developed automatic method for 
estimating polymetallic nodule resources from seafloor's RGB images 
(photographs) using supervised deep-learning methods (Liu et al., 
2021).

The automation of the learning data collection process using a web 
application of the slic superpixel algorithm enabled accurate determi-
nation of nodules and efficient collection of an extensive learning set of 
about 1440 photos in the form of two binary classes 0 - no nodules and 1- 
nodules analogous to those of Song et al. (Song et al., 2019). The analysis 
of learning curves resulted in the selection of CNN network hyper-
parameters and the development of a deep model, in which 31,000 
seafloor images were processed. Coverage of the images with nodules 
was determined, and then based on the watershed and connected 
component analysis (CCA) algorithm, fields of connected nodules were 
segmented into single instances. The mass of the nodules was deter-
mined based on a transition model from percent area coverage to 
abundance expressed in kg/m2. The photos processed in this way made 

it possible to determine the nodules' coverage, mass, granulation and 
many other parameters necessary for the overall resource assessment.

2. Materials

Our study was performed for the exploration area (75,000 km2) of 
the Interoceanmetal Joint Organization consortium (IOM), one of the 19 
International Seabed Authority (ISA) contractors for nodules situated in 
the Clarion-Clipperton Zone exploration area (~4,500,000 km2) 
(Rühlemann et al., 2011) (Fig. 1).

The CCZ is the most critical and explored nodule field worldwide 
(Parianos et al., 2021). The CCZ constitutes an abyssal plain between 
4000 and 5000 m deep. The IOM area is composed of two sectors situ-
ated in the eastern part of the CCZ exploration areas between German, 
Singapore, and Nauru contract areas, a smaller B1 in the north (12,000 
km2) and B2 sector in the north (63,000 km2), (Wasilewska-Błaszczyk 
and Mucha, 2020). The spatial distribution of mineralized material is 
essential for a reliable estimation of mineral resources. Although the 
area of polymetallic nodules is enormous, nodules are not equally 
developed or preserved on all parts of the seafloor (Parianos et al., 
2021). We focus on the H22 exploration block (~4200 km2) of the B2 
sector with 12 image survey lines and H33 block with 2 image survey 
lines and area East of H44 with another 2 image survey lines. This block, 
together with block H11 (5300 km2), is one of the most prospective 
mining fields selected for future exploitation due to high nodule abun-
dance significantly exceeding 10 kg/m2 (Wasilewska-Błaszczyk and 
Mucha, 2020).

The northeastern corner of the H22 block, as presented constitutes 
37 % (~1560 km2) of the H22 area. It is mostly plateau-like abyssal 
plain with two groups of seamounts in the east and south, as well as a 
sparsely distributed parallel ridge and grabens oriented NNW-SSE to N- 
S.

One-tenth of the study area (~150 km2) is covered by seamounts and 
volcanic cones associated with hard-rock basaltic or diabase exposures 
(Maciąg et al., 2019) and sometimes a chalk layer in between the soft 
sediments and volcanic basement (Parianos et al., 2021) indicated by 
our backscatter data. The remaining 90 % (1410 km2) is a sediment- 
covered area, typically smooth and flat, and is most interesting from 
nodule exploration. Most (~1190 km2) of it is embedded with nodules. 
The related sediments are typically pelagic clay and siliceous ooze 
(Wasilewska-Błaszczyk and Mucha, 2020) with trace amounts of 
coarser-grained detrital and allochthonous volcanic material (Maciąg 
et al., 2019)Interestingly the sediments are poor in metals, with only ~6 
% iron and ~0.5 % manganese, which may be owed to the diagenetic 
“scavenging” of metals by the nodules. The sedimentation rate in the 
CCZ area is suggested to be 0.35–0.50 cm/kyr (Ellefmo and Kuhn, 2021).

These areas are affected by seabed currents that drift and accumulate 
sediments, mostly fine clays and oozes (Parianos et al., 2021). The 
advantage of polymetallic nodules in the Pacific Ocean is their high 
content of three primary metals: Ni, Cu, Co, and, Mn, combined with 
contents of Mo, Ti, Li, V, and REE, which can be considered as a by- 
product if a relevant processing method is used (Kuhn and Rühle-
mann, 2021). The nodules grow to a size between 1 and 15 cm in 
diameter on top or within the first 10 cm of deep-sea sediments 
(Rühlemann et al., 2011), with a spheroidal or elliptical shape and 
typical sizes of 3–4 cm for hydrogenetic nodules and 6–12 for diagenetic 
nodules (Wasilewska-Błaszczyk and Mucha, 2020). Hydrogenetic nod-
ules form directly from the precipitation of Fe oxyhydroxides and Mn 
oxides from oxygen-rich near-bottom seawater (Ellefmo and Kuhn, 
2021; Hein et al., 2020). They are enriched in Co and REE (Volkmann 
et al., 2018). The relative variability of primary metal grades for the IOM 
area is very low, with a coefficient of 7–11 % variation within the H22 
block. It is primarily a result of the stable mineral and chemical 
composition of nodules.
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3. Methods

3.1. Data acquisition

In 2019, bottom surveys consisting of photographic profiling were 
conducted on 16 survey lines (rows), and 30,373 bottom images were 

acquired at a resolution of 5184 × 3456 pixels. 12 survey lines were 
located in the H22NE area (Fig. 2), 2 lines in the H33 area and another 2 
outside the designated areas.

At the same time, 31 bottom samples were taken using a box corer, 
with simultaneous imaging in a 3648 × 2736 pixel photo. In addition, 17 
images with bottom samples at 2592 × 1944 resolution were acquired in 

Fig. 1. Location and bathymetry maps of B2 IOM area and exploration blocks: H22, H11, H22NE, H44, H33 (International Seabed Authority, 2018).

Fig. 2. Classified seabed image (left) and bathymetric image (right) of H22NE exploration block based on backscatter intensity data with photo survey lines and box 
corers location.
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2014 (Fig. 3: (a)). These different data sets provide an important basis 
for estimating the polymetallic nodules. Bottom samples collected with 
box corer of 0.5 m × 0.5 m x0.5m dimension (Fig. 3(b)) were used to 
determine the mass of nodules per square meter, at the collection site. 
They were manually sorted by experts (Fig. 3: (c)) into classes of 0–20 
mm, 20–40 mm, 40–60 mm, 60–80 mm, 80–100 mm, 100–120 mm and 
their mass was determined. The data acquired this way was used to 
construct a coverage-abundance model.

3.2. Training data for supervised learning

The training data was prepared using JS Segment Annotator (Fig. 4). 
This is a tool for manual determination of regions in images, written in 
the JavaScript programming language and can be used in web browsers. 
It allows the user to draw a border around the area occupied by a single 
nodule or a group of them.

Many experts working in the field of image analysis, especially those 
dealing with nodules, face a challenge in the form of various artefacts, 
such as sediments, and elements of flora or fauna, which can introduce 
noise and hinder the work of automatic image processing algorithms 
(Fig. 5: (a)). To improve the interpretation of such cases and facilitate 
the work of neural networks, slic superpixels were used in the Java 
Script Segment Annotator, with the help of which, an expert decided 
whether and how to label a nodule partially covered with sediment or 
covered with biological organisms. Typically, based on the experience, 
the expert labelled the blanketed parts as nodules (Fig. 5: (b) and (c)).

This labelling was intended to provide the neural network, in this 
case, U-Net, with specific information about the location of the nodules. 
The labelling of nodules as nodules, even if they are partially covered 
with the deposit, is crucial for the correct interpretation and classifica-
tion of objects in an image. U-Net, being a machine learning model, can 
use this information to recognize and segregate nodules and distinguish 
them from other elements in the image.

Training data was prepared by expert labelling of nodules visible on 
images using Java Script Segment Annotator software. The diagram 
below shows the process of nodule detection model (Fig. 6). It uses a 
neural network with an architecture similar to the popular UNet.

3.3. UNet model architecture and tuning of hyperparameters

This model was developed for medical engineering and automatic 
tissue segmentation tasks (Pan et al., 2020; Ronneberger et al., n.d.). It 
has since become useful and is proving itself in other industries like 
automotive autonomy or aerial remote sensing. Since its presentation, it 
has also been successfully used in other industries for example: auton-
omous cars and aerial remote sensing (Darapaneni et al., 2021; Muna-
war et al., 2023). For this reason, it is now widely used as the first choice 
for a segmentation task in any industry, although recently there have 
been competing solutions, e.g., networks from the YOLO (Carraro et al., 
2023; He et al., 2022), SAM or R-CNN family, which in many tasks, after 
using a technique called transfer learning, give better results (Carraro 
et al., 2023; Dong et al., 2021; He et al., 2022). However, it was decided 
to use it, as a proven method, in the first iteration of the work. The 

architecture itself, however, is extremely prolific and is also used as an 
important component in models such as recent breakthroughs in 
generative AI like Midjourney and Dall-E (Borji, 2022). The UNet 
network is a development of the autoencoder architecture and the 
convolutional network. The autoencoder architecture in its concept, 
implements the following idea. The input data (in this case, an RGB 
image) is gradually compressed by sending the information to fewer and 
fewer neurons until it reaches the so-called latent space, this process is 
called encoding. And then the course is reversed and the information 
compressed into the latent space is sent to more and more neurons, in a 
symmetrical way to the compression process, which is called decoding 
(Haque and Neubert, 2020). At the output, we expect such a network to 
return data (image) as similar as possible to the input image, so the 
network, in the hidden space, learns to compress the relevant features of 
the data (image). The similarity itself can be assessed by various mea-
sures, e.g. MSE.

The second “parent” of UNET networks is convolutional networks. 
The convolutional layer, makes the reasonable assumption that in image 
data it is the nearby pixels that are related to each other, forming so- 
called blobs, groups of pixels whose relationships can then be 
analyzed (Weng et al., 2019). This significantly reduces the size of the 
network, speeds up the learning time and bypasses the problems of, for 
example, fading or exploding gradients. The convolution is also associ-
ated with the operation of so-called pooling, which is a method (usually 
by taking the maximum value) of representing a group of pixels with a 
smaller number of variables/pixels and thus compression and the pos-
sibility of analysis at a higher level of abstraction (Hesamian et al., 
2019).

The UNET network, in terms of shape, retains the visually striking 
feature of the autoencoder, that is, the form of an inverted hourglass 
(Fig. 7). On its input, there is an image, but on its output, we do not want 
to reproduce it, but we want to build a mask that will represent the 
classes into which we want to divide the input image.

The role of the researchers was to experimentally select the hyper-
parameters of the network, properly prepare the learning data, and 
analyze and respond to problems (under and overfitting) during 
learning.

The work used the Python programming language along with li-
braries to support scientific computing and data processing. Among 
them, it is necessary to highlight Tensorflow and Keras for building 
neural networks, Skimage for image processing and Numpy for storing 
images in the form of so-called arrays.

The data were randomly divided into 3 sets: test (10 %), validation 
(10 %) and learning (80 %). The validation set was used to determine 
quality metrics after each learning epoch.

The issue of assigning each pixel the appropriate class, in the case 
under analysis, nodule vs. background in computer vision is called se-
mantic segmentation. It can be solved using classical computer vision 
techniques but due to variable lighting conditions between photos or the 
blurring of photos above technique could not provide satisfactory 
results.

The UNet output model was adapted to solve the problem of 
detecting nodules through a process of optimizing hyperparameters. To 
achieve optimal model performance, a grid search method was used, in 
which different values of key hyperparameters were carefully consid-
ered. A wide range of experiments were conducted, considering the 
following hyperparameters: optimizer, Input image size, Learning rate, 
network size and batch size.

3.4. Connected component analysis and watershed algorithm

Connected Component Analysis (CCA) is an image processing tech-
nique used to identify and isolate groups of connected pixels or regions 
in an image. It is an important step in image analysis that allows for the 
extraction and segmentation of different objects or areas in an image 
(Majanga and Viriri, 2021). The study used the OpenCV library in 

Fig. 3. Photo of nodules on bottom (a), nodules extracted from bottom in box 
corer (b), sorted nodules on measuring scale (c).
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Python. CCA can have difficulty recognizing and analyzing complex, 
irregular shapes. If an object or region in an image has an unusual shape, 
this can lead to problems in identification and segmentation. In the case 
of closely spaced nodules that form a single region, CCA does not always 

separate regions into individual nodules. For this reason, a watershed 
algorithm was used for this type of object, which uses the topology of the 
image to identify boundaries between regions. The concept of the 
watershed can be expressed in terms of simulating flooding on a topo-
graphic surface (Amankwah and Aldrich, 2011). The algorithm de-
termines the watersheds in an image and assigns each pixel the labels of 
the region to which it belongs. In the case of blocked nodules, it divides 
them into smaller corresponding images.

4. Results

The results presented in this report showcase a comprehensive 
analysis of polymetallic nodule abundance on the seabed, using 
advanced deep learning techniques. The data were gathered from a 
research cruise and subjected to both machine learning-based image 
segmentation and statistical modeling to estimate nodule abundance. 
The primary focus is on the application of a neural network model to 

Fig. 4. Sample view of JS Segment Annotator.

Fig. 5. Photo of nodules: (a), Photo with nodules labelled with SLIC super pixel 
algorithm: (b), Example of labelled buried nodules (blue polygon) with 
covering (red polygon): (c).

Fig. 6. Process flow chart of the nodule detection and segmentation.
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process images of the seabed, identifying nodules and distinguishing 
them from the surrounding seabed. Through various stages of image 
processing, including masking, segmentation, and binarization, the 
model successfully evaluated pixel probabilities for classifying nodules. 
The report also explores the learning curves of the model, discussing 
underfitting, overfitting, and the optimal balance between training and 
validation data. Additionally, a transition model was developed to 
convert the 2D coverage of nodules observed in the images to an esti-
mate of mass per square meter. This process involved statistical evalu-
ation of nodule size and weight distributions, leading to the construction 
of a power function that closely fits the gathered data. Visual data rep-
resentations such as frequency histograms, box plots, and scatter plots 
are included to highlight the variability of nodule abundance across 
different survey lines.

4.1. Overview of image segmentation

The first column of (Fig. 8) shows excerpts from the raw, original 
images taken by the camera during the research cruise. In the second, 
the same photos, but with masks applied to them, were used during the 
learning and testing of the segmentation model. The third column con-
tains the raw segmentation results coming out of the neural network. 
Attention should be paid to the fact that the result of the operation does 
not contain a binary image: black and white type, but an image with 256 
shades from white to black. The value of each pixel was evaluated based 
on the probability of belonging to a class of nodules, and to a class of 
seabed. This raises interesting implications, which will be discussed 
later. Finally, the grayscale image was subjected to binarization and the 
operation of segmentation algorithms separating blocks of fractions into 
individual nodules. In the second row, column 3, the network differ-
entiates (brightness of the image) the areas where the nodule is visible or 
partially covered. This effect is also evident in the other images. The 
network also can generalize even if a person in a given photo has not 
marked the nodule. This is evidenced by the last row, where a small 
nodule located in the middle right of the image was not marked by the 
expert, but the network detected it. Potentially, the biggest drawback is 
the transition to single instances of nodules from the entire nodule 
fraction. First, at the time of binarization, where we need to find the 
cutoff, and then during the segmentation algorithms, which sometimes 
result in clearly incorrect splits, as in the last row. Two possible research 
problems, currently being developed by the authors, arise here: the 
study of the impact of the threshold cutoff of the nodule-seabed 
boundary at different levels. Sometimes, as in row one, also for 
humans, the division is not obvious, but the proposed algorithm gives 
acceptable probable results. Before estimating the abundance of the 
deposit, the team conducted a statistical analysis of the results obtained. 
The evaluation was carried out at several levels: individual nodules, 
photos, specific photo survey lines where photos were taken, and the 
entire analyzed area.

4.2. Evaluation of model performance and learning curves

The selection of promising models was made by analyzing learning 
curves, showing how parameters such as cost function, accuracy or 
Intersection over Union (IoU) changed over successive epochs of model 
training for both learning and validation data. As a rule, these curves are 
highly correlated with each other, and it is usually sufficient to track one 
of them. This is a standard method used in machine learning 
(Tursyngaliyeva, 2019). Three example graphs are presented below 
(Fig. 9. Learning curves for training and validation data.). In the figure, 
we see a configuration where we have underfitting (Fig. 8: (a)). The 
result on the validation data is relatively weak compared to the result on 
the learning data. It can be speculated that the model (Q = 1) is rela-
tively small and this causes it to be unable to learn better. Fig. 8: (b) 
shows the beginnings of overfitting. In this case, we can suspect that the 
model is too large, making it able to learn the data by heart. Because of 
this, the accuracy on the learning data increases and on the validation 
data decreases. The graph is cut because a technique called early stop-
ping was used, i.e., if the model stops improving after a certain period of 
time, the experiment is stopped. This technique is used because the vast 
majority of experiments do not end with a satisfactory result, and the 
computational time is long and expensive. Fig. 8: (c) shows a run that we 
can consider desirable. The quality on both training and validation data 
is increasing, and there is not much discrepancy between them.

4.3. Mass estimation of nodules

The final determination of the mass of the concretions per square 
meter required the construction of the transition model from the 2D area 
occupied by the nodules to the mass. To do that the nodules retrieved 
from the bottom by the box corer were sorted with the use of a sieve 
every 20 mm and assigned to the following classes: 0–20 mm, 20–40 
mm, 40–60 mm, 60–80 mm, 80–100 mm, 100–120 mm and >120 mm. 
Based on the data collected from the 48 sites, the average values of the 
weight of the nodules in each class were calculated, which allowed the 
creation of a model to recalculate further the nodules detected by the 
CNN. The model allows the conversion of the coverage of individual 
nodules calculated from the photo to mass. A power function with the 
formula was assumed 

y = 2.6622x2.5911 

whose quality of model fit is described by the coefficient of determina-
tion R2 of 0.9653.

This curve was obtained by averaging the mass of the nodules taken 
from the bottom and contained within the indicated mass ranges. The 
outlier for the largest mass is due to the fact that a small number of 
nodules of this size were extracted. However, as we will see in the results 
chapter, it applies to a marginal number of data. In addition to the 

Fig. 7. The architecture of the UNet network applied in the research.
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exponential function, a very good fit can also be obtained using a 
polynomial of degree 3, which intuitively confirms the correctness of the 
estimate, since mass is proportional to the relatively constant density of 
the nodule and its volume, which, estimating the shape of the nodule 
using an ellipsoid, depends precisely on the third power of its linear size 
(Fig. 10).

4.4. Analysis of abundance variability

The histogram below is a graphical representation of the frequency 
distribution of the abundance for all processed image datasets with 
normal distribution density function fitted (Fig. 11). The abundance 
values are on the x-axis, and the frequency count is on the y-axis. The 

most common abundance values are between 6 and 10 kg/m2. There are 
also a significant number with abundance values between 10 and 13 kg/ 
m2. There are fewer numbers with abundance values above 15 kg/m2 

and below 2 kg/m2. The graph is also skewed to the right, meaning that 
there are more values with higher abundance than with lower. This 
suggests that distribution is dominated by high abundance on the seabed 
and it varies widely, but that most values have abundance between 2 
and 13 kg/m2.

For each 16 lines of the image series the box and whisker plot was 
generated (Fig. 12). The x-axis of the graph depicts the name of the 
image survey line, and the y-axis shows the abundance in kg/m2. The 
supplied data as it was mentioned before come from two different areas 
of CCZ with different occurrences of nodules which is why plots can be 

Fig. 8. Example results of detection and segmentation process.
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divided into two groups: 12 plots with the comparable median abun-
dance oscillating around 8.0 kg/m2 and 4 plots where the median 
abundance is significantly higher, around 10 kg/m2. This means that 
half of the seabed photographs for first 12 lines have abundance values 
above 8.0 kg/m2 and half have abundance values below 8,0 kg/m2. The 
next 4 lines have abundance values above 10.0 kg/m2 and half have 
abundance values below 10.0 kg/m2. For these groups respectively the 
quartiles show that the middle 50 % of the data is between 7.5–8.5 and 
5–12 kg/m2. The whiskers inform that the range of the data is from 2.5 
to 15 for first 12 image lines and 0–25 kg/m2 for the remaining 4 lines.

There are many more outliers in the data for the first group of lines, 
and few for the second group. There are a few outliers in the data, with 
abundance values above 25 kg/m2. However, these outliers are rela-
tively rare. The majority of the data points in the first group, in the 
interquartile range (IQR), fall close to the median indicating that the 
abundance of polymetallic nodules is relatively consistent across most 
seabed photographs. For the second group situation is different IQR is 

wider, and values are not so closely scattered around the median value.
It can be concluded that the study area is characterized by a rela-

tively stable distribution of nodule abundance. Both in terms of median 
mass density per area and IQR. Instead, significantly higher IQR is 
shown by lines F720, 721, 722P and 725P, but they do not lie within the 
study area. They were added to indicate heterogeneity among marine 
parcels and nodule deposits in different areas.

The calculated mean value of abundance for all RGB images along 
the lines illustrates in the bar graph (Fig. 13). The x-axis of the graph 
shows the name of the image survey line, and the y-axis shows the mean 
abundance in kg/m2. The overall trend is staying at a similar level with 
no clear ups and downs for the whole area H22NE. The value of the 
mean for all lines is in the range of 8 to 9 kg/m2. Even for the 4 lines 
outside the area H22NE the mean value is within this range even though 
the modes and medians were different.

The maximum values are characterized by a much greater variation 
than the average values and are arranged in the range from 18 to 25 kg/ 

Fig. 9. Learning curves for training and validation data.

Fig. 10. Coverage to abundance model (CtA) fitted to box corer samples.
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Fig. 11. Frequency distribution of abundance for all RGB images processed.

Fig. 12. Box and whisker plots of all RGB images processed.

Fig. 13. Mean values of abundance for all RGB images along all survey lines.
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m2 (Fig. 14). Here it is difficult to find relations of values with the 
location of the survey line in the area. The minimum values for the in-
dividual survey lines, on the other hand, are even less varied than the 
maximum values and range from 0 to 2.5 kg/m2 (Fig. 15). Half of the 
lines have minimum values >0, which means that a certain number of 
nodules were detected in all photographs along these lines, and no areas 
without their occurrence were identified.

A provided strip plot graph as a complementary scatter plot visual-
izes the distribution of abundance across different survey lines (Fig. 16). 
It instead of showing the median, quartiles, and whiskers shows each 
individual data point represented by dots. There is a general trend the 
data for the H22NE area has a lower abundance and narrower range. 
Abundance values are not so evenly distributed as for the data from 
outside H22NE. This could be due to a number of factors, such as 
changes in the seabed type, seabed sediments on top of nodules, or other 
environmental conditions.

Data determined from analysis of images of seabed taken along 
survey lines in the area from west to east direction provide information 
on the variability of the calculated abundance along the direction of the 
survey lines. The resolution of data is very high. Every 5–10 m there is 
one image available. At this stage of research, we consider it is possible 
to infer estimated abundance for the entire area, if the data can be 
analyzed collectively. This however requires further implementation of 
statistical methods relevant to resource estimations, such as kriging or 
similar methods, such that the estimation could be confirmed by a 
competent person according to a geological standard.

An aggregated abundance value was determined for each survey line. 
It is shaped between 5000 kg for line F725P and 26,000 for line F722P 
(Fig. 17).

4.5. Analysis of the seafloor area covered by the images

The sum of the area of the bottom covered by the images in each 
survey line with a similar distribution of the size of the coverage area for 
a single image depends on the number of images in the line. The number 
of photos in a line, on the other hand, is derived from the length of the 
line assuming a constant interval between successive photos (Fig. 18).

The distribution of values for the area of the bottom covered by a 
single image in each survey line is shown in Fig. 19.

Most of the strips, the IQR is similar, ranging from 3.5 to 4.25 m2 

with a median of about 3.75 m2. This means that good control of the 
height of the camera above the bottom was maintained at the time the 
images were taken, with a similar standard deviation of about 0.6 m2. 
The distribution of the calculated area covered by the images on survey 

line F715_A and 715_B has a lower median, but similar IQR. In contrast, 
the F715_BB line shows a much lower median and narrower IQR range. 
The reason for this is the closer position of the camera to the bottom 
during towing.

The total area of coverage in each line varies between 5000 m2 and 
10,500 m2 (Fig. 24). The calculated summed bottom coverage area for 
all lines was 110,337 m2. In comparison, the area of bottom coverage by 
box corer at the time of sampling in the H22NE area was 7.75 m2.

This allows to conclude that the use of vision methods in estimating 
the abundance of nodules in terms of the size of the sampling area, in the 
set of data we have, has significantly greater potential than direct 
samples (Fig. 20).

The weight of nodules for sorted values of nodule sizes on analyzed 
profiles is presented in (Fig. 21). There is a significant difference be-
tween the profiles inside the H22 NE area and the profiles from other 
places of the exploration area. This difference confirms earlier obser-
vations about the variability of the type of nodules characteristic of a 
given area. These differences were recognized by the neural network, 
resulting in completely different weight characteristics. Of course, the 
nodules of the same size have the same masses, but in different areas 
there are different numbers of smaller nodules and different larger 
nodules. It is visible that in areas outside H22NE there are a greater 
number of large nodules and this gives a higher total weight for these 
groups. In the H22 NE area there is a greater number of smaller nodules 
and they determine the weight on the profiles from this area.

5. Discussion

The results of this study provide a significant advancement in the 
estimation of polymetallic nodule abundance using deep learning 
models applied to seafloor imagery. By leveraging the UNet convolu-
tional neural network framework, we were able to automate the 
detection and quantification of nodules, demonstrating substantial im-
provements in speed and efficiency compared to traditional methods 
such as direct sampling and acoustic imagery. The study successfully 
processed over 30,000 seabed photographs in under 10 h, a vast 
improvement in time efficiency, making this approach highly scalable 
for large exploration areas like the Clarion-Clipperton Zone (CCZ). The 
findings from this study not only contribute to the ongoing development 
of more efficient and scalable methods for deep-sea resource assessment 
but also provide valuable insights for future exploration and potential 
exploitation of these resources. The ability to accurately map nodule 
distribution and abundance is essential for evaluating the feasibility of 
deep-sea mining operations and for developing strategies to minimize 

Fig. 14. Maximum values of abundance for all survey lines of RGB images.
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Fig. 15. Minimum values of abundance for all survey lines of RGB images.

Fig. 16. Strip plot distribution of all RGB images for all survey lines.

Fig. 17. Summarized abundance for each photo survey lines in all analyzed areas.
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Fig. 18. Length of photo survey line and determined abundance.

Fig. 19. Distribution of seabed area covered by single image along the survey lines.

Fig. 20. The sum of seabed area covered by single RGB images in each line.
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environmental impact.
Nevertheless, challenges remain, particularly in terms of the di-

versity of data needed to train models. Current deep learning models are 
often trained on limited datasets, which may not fully account for the 
variability in environmental conditions, sediment types, and nodule 
morphologies across different regions of the ocean floor.

One of the key findings is the model's ability to estimate nodule 
abundance with reasonable accuracy. The abundance estimates derived 
from the deep learning model, which ranged between 6 and 25 kg/m2, 
are consistent with previously reported values for highly prospective 
mining areas in the CCZ (Rühlemann et al., 2011; Ellefmo and Kuhn, 
2021; Mucha and Wasilewska-Błaszczyk, 2020; Wasilewska-Błaszczyk 
and Mucha, 2021). Although the model underestimates true abundance 
in certain cases compared to traditional samples (due to challenges like 
nodules being buried under sediment or image quality degradation), it 
nonetheless provides a reliable estimation tool for preliminary resource 
assessment. The majority of nodules are found at the surface but 
exploration campaigns and nodules sampling in Clarion Clipperton, 
carried out by IOM or other ISA contractors, e.g. (Kotlinski and Stoya-
nova, 2007; Yang et al., 2024) has revealed that there can be some 
nodules buried at the deposit depths of range from several centimeters to 
0.5 m. They were as well studied from the geotechnical and mineral-
ogical point of view (Fan et al., 2024). Buried nodules and/or their 
spatial distribution can only be identified using physical sampler, e.g. 
box corer or grab sampler. There aren't any systematic and statistically 
valid comparisons between data (nodule abundance) that were obtained 
from cruise for buried nodules and how they can be compared to the 
abundance of surface nodules but it is said that in some places locally 
can be up to 25 % more nodules buried at depths of 5–40 cm (Parianos 
et al., 2021).

This pattern is however random, local, and would require additional 
investigations during sampling. There were places where no buried 
nodules were collected at all. Buried polymetallic nodules are not 
considered to be included in the estimation of resources (Parianos et al., 
2021) because of the three most important reasons: 

– accessibility: Buried nodules are covered by thick layer of sediment 
and are therefore harder to access than those on the seafloor surface. 
The technology and methods required to recover buried nodules are 
more complex, expensive, and less efficient compared to those on the 
surface.

– uncertain quantity and quality: The exact quantity and quality of 
buried nodules are difficult to ascertain, especially for imaging 
methodology. Their location, depth of burial, and concentration 
within the sediment are uncertain, making it challenging to 

accurately estimate their potential as a resource and to identify them 
during extraction.

– environmental impact: Extracting buried nodules would likely 
involve more intrusive and damaging processes than collecting sur-
face nodules, potentially causing significant disruption to the marine 
environment. Much more sediment is to be stripped if buried nodules 
are to be considered for mining. This includes disturbing the seabed 
habitat, which could have long-lasting ecological consequences.

Given the aforementioned factors, the authors believe that excluding 
buried nodules from the resource calculation does not lead to an un-
derestimation of the resource estimates. This is because buried nodules 
are currently inaccessible due to the existing environmental and depo-
sitional conditions. Consequently, it is challenging to categorize them as 
a resource at all currently.

Another limitation may lie in the two-step segmentation process, 
where first, the image is divided into nodules and the background, and 
then the nodule fraction is further segmented into individual nodules. 
While effective, this process introduces potential errors, particularly in 
accurately delineating individual nodules in densely packed areas. 
Future work could focus on implementing instance or panoptic seg-
mentation models, which might offer more precise nodule identification 
by treating each nodule as a separate instance from the outset.

Polymetallic nodules in the Clarion-Clipperton Zone (CCZ) typically 
exhibit a rounded to elongated, irregular shape. This makes it difficult to 
determine the exact size of the single. These nodules are often described 
as potato-like in appearance, with smooth or slightly rough surfaces. 
Their size can vary significantly, ranging from a few centimeters to over 
10 cm in diameter. The shape and size of the nodules are influenced by 
the growth process, which involves the precipitation of metal layers over 
time around a core, usually of biological origin or a fragment of rock 
(Hein et al., 2013; Sharma et al., 2010). The paper assumes that the size 
of the nodules and their size class membership can be determined based 
on the so-called soft sieve, which is software equivalent to a physical 
sieve used in the process of nodule sorting when derived from the bot-
tom. The sorting of nodules is based on their movement over the sieve, 
with nodule particles larger than the sieve mesh size moving freely over 
the sieve surface and forming a larger fraction, and smaller particles 
passing through the mesh and being collected a smaller fraction. This 
means that the more irregular (elongated) the shape, the more likely it is 
that nodules whose diameter is larger than the sieve mesh can pass 
through the mesh. It may propagate on inaccuracies in mass 
determination.

Fig. 21. Total mass of nodule for sorted values of nodules size on analyzed survey line.
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6. Conclusions

Utilizing deep learning techniques for nodule detection and seg-
mentation in seafloor images enabled the estimation of polymetallic 
nodule abundance with promising accuracy. The deep learning model 
successfully identified and quantified nodules, yielding a mean abun-
dance of 8.5 kg/m2 and a maximum abundance of 25 kg/m2. The 
abundance estimates exhibited spatial variability along the survey line, 
highlighting the heterogeneous distribution of nodules on the seafloor. 
The study's findings also demonstrated that the deep learning model 
could effectively handle images with minimum abundance values 
greater than zero. To achieve this, a coverage-to-abundance model 
based on seabed samples was developed and integrated with the deep 
learning model. This integrated approach facilitated the estimation of 
abundance across the entire survey line, including areas with varying 
nodule densities. Integrating deep learning with seafloor imagery and 
traditional sampling methods offers a comprehensive and robust 
approach to assessing polymetallic nodule resources in the deep sea. 
This methodology complements the need for extensive physical sam-
pling, promoting a more sustainable and efficient exploration process. It 
should emphasize that only visible nodules or part of nodules were 
evaluated in the process. It means the overall method underestimates 
the real abundance. Despite this, the solution introduces a great deal of 
valuable information in deposit estimation and mining planning. It 
provides an opportunity to assess coverage variability and granulation 
variation and to identify areas with high or very high concentrations of 
nodules.

Also, information about the absence of visible nodules in the images, 
in the context of geological settings and the possibility of their occur-
rence under the sedimentary layer, however, may indicate a high 
probability of their absence or low, economically insignificant abun-
dance in the area.

The deep learning approach provides several advantages over earlier 
methods: 

– Scalability: Once trained, deep learning models can process large 
datasets of seafloor photographs rapidly, enabling faster analysis 
over vast regions compared to manual or semi-automated methods.

– Automation: Reducing the reliance on human experts for nodule 
identification reduces subjectivity and labour-intensive manual 
efforts.

– Improved Accuracy: Deep learning models can integrate multi-modal 
data sources (e.g., image data with sonar or other sensor data), 
improving the robustness of abundance predictions.

Further research should focus on enhancing the generalizability of 
the deep learning model by incorporating a broader range of seabed 
environments, nodule morphologies, and illumination conditions. 
Additionally, investigating the applicability of the deep learning model 
to different seabed survey systems will broaden its potential for wide-
spread adoption.

While current models rely heavily on supervised learning, the future 
may see an increase in self-supervised or unsupervised learning tech-
niques. These models can learn to detect patterns in seafloor data with 
minimal labelled examples, which is particularly beneficial in deep-sea 
environments where labelled datasets are often scarce. By pre-training 
models on larger, more diverse datasets and then fine-tuning them on 
specific regions, researchers can increase both the accuracy and effi-
ciency of nodule abundance estimations. With advancements in under-
water robotics and autonomous vehicles, there is potential for real-time 
nodule detection and estimation using deep learning algorithms. These 
systems could continuously capture and analyze seafloor images, 
providing up-to-date information on nodule abundance for mining 
operations.

In conclusion, applying deep learning to seafloor images, combined 
with traditional sampling methods, has proven to be an effective tool for 

mapping polymetallic nodule abundance and distribution. This meth-
odology holds significant potential for advancing deep-sea exploration 
and resource management practices, paving the way for sustainable and 
responsible resource utilization.
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